Let be a square matrix of order . Then is called an idempotent matrix if .
If a matrix is idempotent, it follows that . All Idempotent matrices except identity matrices are singular matrices.
One way to make idempotent matrices is
, where
is a vector satisfying
. In this case
is symmetric too.
#Idempotent matrices in Julia
using LinearAlgebra
u = rand(5)
u = u/norm(u) #Force u^T * u = 1
A = I - u*u'
isapprox(A^100,A) # true
isequal(A,A') # true (test for symmetricity)
Cross posted to https://pythonjulia.blogspot.com/2022/03/100-julia-exercises-with-solutions.html
Top comments (7)
Hey! This is cool to see, it would be nice to also add some context for folks about why you would need this, etc etc. You can also set the canonical URL if you edit this post to point to the original blog post above.
You can also set the canonical URL if you edit this post to point to the original blog post above.
How to do it.
I went ahead and fixed it for you, but next to the publish button there's a blue circle-ish thing, that's where you can set the canonical URL.
Add to the discussion